British Heart Foundation funds AI to predict heart disease risk

英国心脏基金会资助剑桥研究团队开发人工智能,用以预测心脏病和中风

2019-01-28 17:41:00 digitalhealth

本文共1003个字,阅读需3分钟

Artificial intelligence could soon be used to predict a patient’s future risk of heart attack or stroke. A team at the University of Cambridge are developing a machine learning tool that helps predict people’s risk based on their health records, thanks to joint funding from the British Heart Foundation and the Alan Turning Institute. Researchers plan to use the long-term health records of over two million people in the UK to develop the algorithm. Currently clinicians and GPs use risk calculators as part of the ‘NHS Health Check’ to asses a patient’s 10-year risk of developing heart or circulatory problems. But these calculators only take into account a patient’s health at the time it is used, rather than including their medical and family history. They also don’t account for how a patient’s risk factors have changed over time or differentiate the risk by specific heart and circulatory diseases, such as heart attacks, strokes, heart failure or abnormal heart rhythms. The algorithm will use a wealth of information on people’s long term health records; map past trends in each patient’s health; and separate and classify the risk for each type of disease. This will then enable clinicians to better diagnose or predict a patient’s risk of disease and treat them proactively rather than reactively. Dr Angela Wood, senior university lecturer in biostatistics at The University of Cambridge, said: “It’s only recently that we’ve had the technology to process the huge amount of data available in health records and use it to our own advantage. “New algorithms could allow us to pick up entirely new and detailed patterns in people’s past health to predict their risk of future events – ultimately saving lives.” This project is one of six research grant applications awarded through a £550,000 dedicated joint funding scheme between the BHF and The Alan Turing Institute. The selected projects also include using machine learning to personalise the risk posed by factors such as smoking and high blood pressure to improve the accuracy of intervention and treatment. The projects will form part of The Turing Institute’s health research programme, which aims to accelerate the scientific understanding of disease and improve health through data-driven innovation in AI and statistical science. Professor Metin Avkiran, associate medical director at BHF, added: “Investing in data science and machine learning innovation is critical if we want to reduce the burden of early deaths and unnecessarily suffering from heart and circulatory disease. “Data science is set to accelerate breakthroughs in medical research and the outcome of projects such as this could ultimately transform care for millions of people living under the shadow of heart and circulatory disease in the UK.” If you want to hear more about what the BHF is up to, chairman, Doug Gurr, is a keynote speaker for Digital Health Rewired in March 2019. Gurr will be explaining how the medical research charity is now focusing investment in at scale data research in order to achieve a transformational breakthrough in the prediction and prevention of heart disease.
人工智能可能很快被用来预测病人未来心脏病发作或中风的风险。 剑桥大学的一个团队正在开发一种机器学习工具,借助英国心脏基金会和艾伦·特灵研究所的联合资助,该工具有助于根据人们的健康记录预测人们的风险。 研究人员计划使用英国两百多万人的长期健康记录来开发这个算法。 目前,临床医生和 GPs 使用风险计算器作为“ NHS 健康检查”的一部分,以评估患者10年来发展心脏或循环系统问题的风险。 但这些计算器只考虑到病人在使用时的健康状况,而不包括他们的医疗和家族史。 他们也没有考虑到患者的风险因素随时间的变化,也没有考虑到特定的心脏病和循环系统疾病(如心脏病发作、中风、心力衰竭或心律异常)如何区分风险。 该算法将使用关于人们长期健康记录的大量信息,绘制每个病人健康的过去趋势图,并对每种疾病的风险进行分离和分类。 这将使临床医生能够更好地诊断或预测患者的疾病风险,并主动治疗,而不是被动治疗。 剑桥大学( University of Cambridge )生物统计学高级大学讲师安吉拉•伍德( Angela Wood )博士表示:“直到最近,我们才掌握了处理健康记录中大量可用数据的技术,并将其用于我们自己的优势。 “新算法可以让我们掌握人们过去健康状况的全新详细模式,从而预测他们未来事件的风险——最终挽救生命。” 该项目是 BHF 与艾伦·图灵研究所通过一项55万英镑的专项联合资助计划授予的六项研究补助金申请之一。 选定的项目还包括利用机器学习个性化风险所构成的因素,如吸烟和高血压,以提高干预和治疗的准确性。 这些项目将成为图灵研究所健康研究方案的一部分,该方案旨在通过人工智能和统计科学领域的数据驱动创新,加快对疾病的科学认识,改善健康状况。 BHF 的副医学主任梅廷•阿夫基兰( Metin Avkiran )教授补充道:“如果我们想减轻早期死亡的负担、不必要的心脏病和循环系统疾病,投资数据科学和机器学习创新至关重要。 “数据科学将加速医学研究的突破,像这样的项目的结果最终可能会改变英国数百万生活在心脏和循环系统疾病阴影下的人的护理。” 如果你想听到更多关于 BHF 的内容,主席 DougGurr ,是一个关键发言人数字健康 Rewire 在2019年3月。 Gurr 将解释医学研究慈善机构目前如何集中投资于规模数据研究,以实现预测和预防心脏病的转变突破。

以上中文文本为机器翻译,存在不同程度偏差和错误;偶尔因源网页结构局限,内容无法一次完整呈现。请理解并参考原站原文阅读。

阅读原文